IISER Bhopal team finds circular RNA molecule behind HIV-1 virus replication

6

Bhopal, Sep 25 (IANS) Scientists from the Indian Institute of Science Education and Research (IISER) Bhopal has identified a specific circular RNA which plays a crucial role in multiplication of the AIDS-causing HIV-1 virus within the human body.

The study, published in the peer-reviewed journal Science Advances, revealed how the newly identified circular RNA molecule, called ciTRAN, influences the virus’s transcription process, which could potentially lead to novel therapeutic strategies against HIV-1.

The RNA or Ribonucleic acid is a molecule in living cells that carries genetic information and helps in the production of proteins. RNAs are in general straight-chain, free-end structures but one form of RNA called ‘circRNA’ forms a closed-loop.

The circRNA plays a pivotal role in regulating gene expression and is essential for various biological processes. Its role in HIV-1 replication has remained unclear for a long time.

“Characterising circular RNA can be tricky because it usually is less abundant, making it further challenging to detect in the native form. It is like trying to follow a complicated recipe,” said lead author Dr Ajit Chande, from Department of Biological Sciences, IISER Bhopal.

“Our results indicate that HIV-1 virus hijacks this host-encoded ciTRAN in such a way that it can use it to multiply efficiently. This discovery uncovers a previously unknown aspect of how viruses like HIV-1 overcome transmission barriers,” he added.

The team developed a novel approach called circDR-Seq to successfully capture circRNAs from T-cells (white blood cells) infected with the HIV-1 virus and identified a specific circRNA named ciTRAN.

Along with this, researchers also developed a molecule capable of inhibiting viral transcription that may be helpful in HIV-1 treatment.

By showing how ciTRAN promotes the virus’s ability to multiply efficiently, this study offers promising avenues for the development of novel therapeutic interventions. Moreover, the creation of a molecule capable of inhibiting viral transcription represents a significant leap in our understanding of combating HIV-1 and potentially other viruses.

–IANS

ya/rvt/prw

Disclaimer
The opinions expressed within this article are the personal opinions of the author. They do not reflect the views of the website and this website does not assume any responsibility or liability for the same.